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ASYNCHRONOUS DISTRIBUTED SEARCHLIGHT SCHEDULING∗

KARL OBERMEYER†, ANURAG GANGULI‡ AND FRANCESCO BULLO†

Abstract. This paper develops and compares two simple asynchronous distributed searchlight
scheduling algorithms for multiple robotic agents in nonconvex polygonal environments. A searchlight
is a ray emitted by a agent which cannot penetrate the boundary of the environment. A point is
detected by a searchlight if and only if the point is on the ray at some instant. Targets are points
which can move continuously with unbounded speed. The objective of the proposed algorithms is
for the agents to coordinate the slewing (rotation about a point) of their searchlights in a distributed
manner, i.e., using only local sensing and limited communication, such that any target will necessarily
be detected in finite time. The first algorithm we develop, called the DOWSS (Distributed One
Way Sweep Strategy), is a distributed version of a known algorithm described originally in 1990
by Sugihara et al [9], but it can be very slow in clearing the entire environment because only one
searchlight may slew at a time. In an effort to reduce the time to clear the environment, we develop
a second algorithm, called the PTSS (Parallel Tree Sweep Strategy), in which searchlights sweep in
parallel if guards are placed according to an environment partition belonging to a class we call PTSS
partitions. Finally, we discuss how DOWSS and PTSS could be combined with with deployment, or
extended to environments with holes.

1. Introduction. Consider a group of robotic agents acting as guards in a non-
convex polygonal environment, e.g., a floor plan. For simplicity, we model the agents
as point masses. Each agent is equipped with a single unidirectional sweeping sensor
called a searchlight (imagine a ray of light such as a laser range finder emanating from
each agent). A searchlight aims only in one direction at a time and cannot penetrate
the boundary of the environment, but its direction can be changed continuously by
the agent. A point is detected by a searchlight at some instant iff the point lies on
the ray. A target is any point which can move continuously with unbounded speed.
The Searchlight Scheduling Problem is to

Find a schedule to slew a set of stationary searchlights such that any
target in an environment will necessarily be detected in finite time.

A searchlight problem instance consists of an environment and a set of stationary
guard positions. Obviously there can only exist a search schedule if all points in the
environment are visible by some guard. For a graphical description of our objective,
see Fig. 1.1 and 1.2.

To our knowledge the searchlight scheduling problem was first introduced in the
inspiring paper by Sugihara, Suzuki and Yamashita in [9], which considers simple
polygonal environments and stationary searchlights. [11] extends [9] to consider
guards with multiple searchlights (they call a guard possessing k searchlights a k-
searcher) and polygonal environments containing holes. Some papers involving mo-
bile searchlights, sometimes calling them flashlights or beam detectors, are [4], [12], [8],
and [5]. Closely related is the Classical Art Gallery Problem, namely that of finding
a minimum set of guards s.t. the entire polygon is visible. There are many variations
on the art gallery problem which are wonderfully surveyed in [10], [6], and [7].

Assume now that each member of the group of guards is equipped with omni-
directional line-of-sight sensors. By a line-of-sight sensor, we mean any device or
combination of devices that can be used to determine, in its line-of-sight, (i) the
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Fig. 1.1. Simulation results of the PTSS algorithm described in Section 4.2, executed by agents
(black dots) in a polygon shaped like a typical floor plan. Left to right , moving targets (small
yellow squares) disappear as they are detected by searchlights (red). The cleared region grows until
it encompasses the entire environment.

position or state of another guard, and (ii) the distance to the boundary of the en-
vironment. By omnidirectional, we mean that the field-of-vision for the sensor is 2π
radians. There exist distributed algorithms to deploy asynchronous mobile robots
with such omnidirectional sensors into nonconvex environments, and they are guar-
anteed to converge to fixed positions from which the entire environment is visible,
e.g., [2] and [3]. At least one algorithm exists which guarantees the ancillary benefit
of the final guard positions having a connected visibility graph ([3]).

Once a set of guards seeing the entire environment has been established, it may
be desired to continuously sweep the environment with searchlights so that any target
will be detected in finite time. The main contribution of this paper is the develop-
ment of two different asynchronous distributed algorithms to solve the searchlight
scheduling problem. Correctness and bounds on time to clear nonconvex polygo-
nal environments are discussed. The first algorithm we develop, called the DOWSS
(Distributed One Way Sweep Strategy, Sec. 4.1, is a distributed version of a known
algorithm described originally in [9], but it can be very slow in clearing the entire en-
vironment because only one searchlight may slew at a time. On-line processing time
required by agents during execution of DOWSS is relatively low, so that the expedi-
ence with which an environment can be cleared is essentially limited by the maximum
angular speed searchlights may be slewn at. In an effort to reduce the time to clear the
environment, we develop a second algorithm, called the PTSS (Parallel Tree Sweep
Strategy, Sec. 4.2), which sweeps searchlights in parallel if guards are placed accord-
ing to an environment partition belonging to a class we call PTSS partitions. That
we analyze the time it takes to clear an environment, given a bound on the angular
slewing velocity, is a unique feature among all papers involving searchlights to date.
Finally, we discuss how DOWSS and PTSS can be extended for environments with
holes and for mobile guards performing a coordinated search. Until now, there has
been no description in the literature of a scalable distributed algorithm for clearing an
environment with mobile searchlights (1-searchers), though [4] and [12], for example,
offer some centralized approaches.

We begin with some technical definitions, statement of assumptions, and brief
description of the known centralized algorithm called the one way sweep strategy
(appears, e.g., in [9], [11], [12]). We then develop a partially asynchronous model, a
distributed one way sweep strategy, and our new algorithm the parallel tree sweep
strategy.

2. Preliminaries.

2.1. Notation. We begin by introducing some basic notation. We let R, S1,
and N refer to the set of real numbers, the circle, and natural numbers, respectively.
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(a)

(c) (d)

(b)

Fig. 1.2. A simple example of a searchlight schedule. From (a) to (d): First the lower agent
aims at the upper agent and sweeps until it hits a visibility gap. Next, the upper agent sweeps
the other side of the visibility gap so the lower agent can continue sweeping the remainder of the
environment. No target, no matter how fast, would be able to avoid being detected by this slewing
sequence.

Given two points x, y ∈ R2, we let [x, y] signify the closed segment between x and
y. Similarly, ]x, y[ is the open segment between x and y, [x, y[ represents the set
]x, y[∪{x} and ]x, y] is the set ]x, y[∪{y}. Given a finite set X , let |X | represent the
cardinality of the set. Also, we shall use P to refer to tuples of elements in R2 of the
form (p[0], . . . , p[N−1]) (these will be the locations of the agents), where N denotes the
total number of agents.

We now turn our attention to the environment we are interested in and to the
concepts of visibility in such environments. Let E be a simple polygonal environment,
possibly nonconvex. By simple, we mean that E does not contain any hole and the
boundary does not intersect itself. Throughout this paper, n will refer to the number
of edges of E and r the number of reflex vertices. A point q ∈ E is visible from p ∈ E
if [p, q] ⊂ E . The visibility set V(p) ⊂ E from a point p ∈ E is the set of points in
E visible from p. A visibility gap of a point p with respect to some region R ⊂ E
is defined as any line segment [a, b] such that ]a, b[⊂ int(R), [a, b] ⊂ ∂V(p), and it is
maximal in the sense that a, b ∈ ∂R (intuitively, visibility gaps block off portions of
R not visible from p). The visibility graph Gvis of a set of agents P in environment E
is the undirected graph with P as the set of vertices and an edge between two agents
iff they are visible to each other.

We now introduce some notation specific to the searchlight problem. An instance
of the searchlight problem is specified by a pair (E , P ), where E is an environment
and P is a set of searchlight locations in E . For convenience, we will refer to the ith
searchlight as s[i] (which is located at p[i] ∈ R2), and S = {s[0], . . . , s[N−1]} will be
the set of all searchlights. θ[i] will denote the configuration angle of the searchlight
in radians from the positive horizontal axis, and Θ = {θ[0], . . . , θ[N−1]} the joint
configuration. So, if we say, e.g., aim s[i] at point e, what we really mean is set θ[i]

equal to an angle such that the ith searchlight is aimed at e. Note that searchlights
do not block visibility of other searchlights.

The next few definitions were taken from [9].

Definition 2.1 (schedule). The schedule of a searchlight s[i] ∈ S is a continuous
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function θ[i] : [0, t∗] 7→ S1, where [0, t∗] is an interval of real time.
The ray of s[i] at time t ∈ [0, t∗] is the intersection of V(p[i]) and the semi-infinite

ray starting at p[i] with direction θ[i](t). s[i] is said to be aimed at a point x ∈ E in
some time instant if x is on the ray of s[i]. A point x is illuminated if there exists a
searchlight aimed at x.

Definition 2.2 (separability). Two points in E are separable at time t ∈ [0, t∗]
if every curve connecting them in the interior of E contains an illuminated point,
otherwise they are nonseparable.

Definition 2.3 (contamination and clarity). A point x ∈ E is contaminated at
time zero if and only if it is not illuminated. The point x is contaminated at time
t ∈]0, t∗] iff ∃y ∈ E such that (1) y is contaminated at some t′ ∈ [0, t[, (2) y is not
illuminated at any time in the interval [t′, t], and (3) x and y are nonseparable at t. A
point which is not contaminated is called clear. A region is said to be contaminated
if it contains a contaminated point, otherwise it is clear.

Definition 2.4 (search schedule). Given E and a set of searchlight locations
P = {p[0], . . . , p[N−1]}, the set Θ = {θ[0], . . . , θ[N−1]} is a search schedule for (E , P )
if E is clear at t∗.

2.2. Problem description and assumptions. We now describe the problem
we solve and the assumptions made. The Distributed Searchlight Scheduling Problem
is to

Design a distributed algorithm for a network of autonomous robotic
agents in fixed positions, who will coordinate the slewing of their
searchlights so that any target in an environment will necessarily
be detected in finite time. Furthermore, these agents are to operate
using only information from local sensing and limited communication.

What is precisely meant by local sensing and limited communication will become
clear in later sections. The following standing assumptions will be made about every
searchlight instance in this paper:

(i) The environment is a simple polygon with finitely many reflex vertices.
Comments: Compactness is a practical assumption for sensor range limita-
tions. Simple connectedness means no holes. Having only finitely many reflex
vertices precludes problems such as arise from fractal environments and will
be important for proving the algorithms terminate in finite time.

(ii) Every point in the environment is visible from some agent and there are a
finite number N ∈ N of agents.
Comments: If there were some point in the environment not visible by any
agent, then a target could remain there undetected for infinite time.

(iii) For every connected component of Gvis, there is at least one agent located on
the boundary of the environment.
Comments: This will be important for proving the algorithms terminate with-
out failure. It also implies every agent is either on the boundary of the envi-
ronment or visible from some other agent. If there existed an agent i located
at a point pi in the interior of the environment and not visible by any other
agent, then there would exist ǫ > 0 such that Bǫ(pi)∩V(pj) = ∅ for i 6= j. A

target could thus evade detection by remaining in Bǫ(pi) and simply staying
on the opposite side of agent i as li points.

2.3. One Way Sweep Strategy (OWSS). This section describes informally
the centralized recursive One Way Sweep Strategy (OWSS hereinafter) originally in-
troduced in [9]. The reader is referred to [9] for a detailed description. Centralized
OWSS also appears in [12] and [11]. OWSS is a method for clearing a subregion of a
simple 2D region E determined by the rays of searchlights. The subregions of interest

4



are the so-called semiconvex subregions of E supported by a set of searchlights at a
given time and are defined as follows:

Definition 2.5 (semiconvex subregion). E is always a semiconvex subregion of
E supported by ∅. Furthermore, any R ⊂ E is a semiconvex subregion of E supported
by a set of searchlights Ssup if both of the following hold:

(i) It is enclosed by a segment of ∂E and the rays of some of the searchlights in
Ssup.

(ii) The interior of R is not visible from any searchlight in Ssup.
The term “semiconvex” comes from the fact that any reflex vertex of a semicon-

vex subregion is also a reflex vertex of E . In polygonal environments, all semiconvex
subregions are polygons. The schedule used in Fig. 1.2 was based on OWSS, but as
a more general example, consider Fig. 2.1. To clear the environment E , which is a
semiconvex subregion supported by ∅, we may begin by selecting an arbitrary search-
light on the boundary, say s[0]. The first searchlight selected to clear an environment
will be called the root. s[0] aims as far clockwise (cw hereinafter) as possible so that it
is aligned along the cw-most edge. li will then slew couterclockwise (ccw hereinafter)
through the environment, stopping incrementally whenever it encounters a visibility
gap. The only visibility gap s[0] encounters produces the semiconvex subregion R
(thick border). At this time, another searchlight which sees across the visibility gap
and is not in the interior of R, in this case s[1], is chosen to begin sweeping the area
in R not seen by s[0]. Notice we have marked angles φstart and φfinish. These are the
cw-most and ccw-most directions, resp., in which s[1] can aim at some point in R.
s[1] will slew from φstart to φfinish and in the process encounter visibility gaps, each
producing the semiconvex subregions R1, Rj , and Rm, which must be cleared by s[2]

and/or s[3]. As soon as R is clear (when θ[1] = φfinish), s[0] can continue slewing until it
is pointing along the wall immediately to its left at which time the entire environment
is clear. The recursive nature of OWSS should be apparent at this point. Note that
in OWSS (and DOWSS described later) it is actually arbitrary whether a searchlight
slews cw or ccw over a semiconvex subregion, but to simplify the discussion we always
use ccw.

3. Asynchronous Network of Agents with Searchlights. In this section
we lay down the sensing and communication framework for the searchlight equipped
agents which will be able to execute the proposed algorithms. Each agent is able to
sense the relative position of any point in its visibility set as well as identify visibility
gaps on the boundary of its visibility set. The agents’ communication graph Gcomm is
assumed to connected. An agent can slew its searchlight continuously in any direction
and turn it on or off.

Each of the N agents has a unique identifier (UID), say i, and a portion of memory
dedicated to outgoing messages with contents denoted by M[i]. Agent i can broadcast
its UID together with M[i] to all agents within its communication region, where the
communication region is defined differently in each algorithm. Such a broadcast will
be denoted by BROADCAST(i,M[i]). We assume a bounded time delay, δ > 0,
between a broadcast and the corresponding reception.

Each agent repeatedly performs the following sequence of actions between any

two wake-up instants, say instants T
[i]
l and T

[i]
l+1 for agent i:

(i) SPEAK, that is, send a BROADCAST repeatedly at δ intervals, until it starts
slewing;

(ii) LISTEN for a time interval at least δ;
(iii) PROCESS and LISTEN after receiving a valid message;
(iv) SLEW to an angle decided during PROCESS.
See Figure 3.1 for a schematic illustration of the above schedule.
Any agent i performing the SLEW action does so according to the following
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clear

s[0]

s[2]

s[3]

R1

Rj

Rm

a1

b1

aj
bj

am bm

s[1]

θfinish
θstart

R

Fig. 2.1. One Way Sweep Strategy (OWSS) clears, by slewing s[1], the semiconvex subregion R

(thick border) supported by s[0]. s[1] must stop incrementally at each of its visibility gaps [a1, b1],
[aj , bj ], and [am, bm]. In this recursive process, the regions (R1, Rj, Rm) behind the visibility gaps

become semiconvex subregions supported by {s[0], s[1]}, and must be cleared using only the remaining

searchlights (s[2] and s[3]) .

discrete-time control system (cf Section 2.3):

θ[i](t+ ∆t) = θ[i](t) + u[i], (3.1)

where the control is bounded in magnitude by smax. The control action depends on
time, values of variables stored in local memory, and the information obtained from

communication and sensing. The subsequent wake-up instant T
[i]
l+1 is the time when

the agent stops performing SLEW and is not predetermined. This network model is
identical to that used for distributed deployment in [2] and [3], and is similar in spirit
to the partially asynchronous model described in [1].

4. Distributed Algorithms. In this section we design distributed algorithms
for a network of agents as described in Section 3, where no agent has global knowledge
of the environment or locations of all other agents.

4.1. Distributed One Way Sweep Strategy (DOWSS). Once one under-
stands OWSS as in Section 2.3, esp. its recursive nature, performing one way sweep
of an environment in a distributed fashion is fairly straightforward. We give here
an informal description and supply a pseudocode in Tab. 4.1 (A more detailed pseu-
docode, which we refer to in the proofs, can be found in the appendix, Tab. 6.1).
In our discussion root/parent/child will refer to the relative location of agents in the
simulated one way sweep recursion tree. In this tree, each node corresponds to a one
way slewing action by some agent. A single agent may correspond to more than one
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T
[i]
l

T
[i]
l+1

LISTEN

PROCESS SLEW

T
[i]
l + λ

[i]
l

T
[i]
l + λ

[i]
l + ρ

[i]
l

BROADCAST(i,M[i]) BROADCAST(i,M[i])

δ δ δ

≥ δ

Fig. 3.1. Sequence of actions performed by an agent i in between two wake-up instants. Note
that a BROADCAST(i,M[i]) is an instantaneous event taking place where there is a vertical pulse,
where as the PROCESS, LISTEN and SLEW actions take place over an interval. The SLEW
interval may be empty if the agent does not sweep.

node, but only one node at a time . To begin DOWSS, some agent (the root∗), say
i, can aim as far cw as possible and then begin slewing until it encounters a visibility
gap. Paused at a visibility gap, agent i broadcasts a call for help to the network.
For convenience, call the semiconvex subregion which i needs help clearing R. All
agents not busy in the set of supporting searchlights Ssup (indeed at the zeroth level
of recursion only the root is in Ssup), who also know they can see a portion of int(R)
but are not in int(R), volunteer themselves to help i. Agent i then chooses a child and
the process continues recursively. In DOWSS as in Tab. 4.1, an agent needing help
always chooses the first child to volunteer, but some other criteria could be used, e.g.,
who sees the largest portion of R. Whenever a child is finished helping, i.e., clearing a
semiconvex subregion, it reports to its parent so the parent knows they may continue
slewing.

The only subtle part of DOWSS is getting agents to recognize, without global
knowledge of the environment, that they see the interior of a particular semiconvex
subregion which some potential parent needs help clearing. More precisely, suppose
some agent l must decide whether to respond as a volunteer to agent i’s help request
to clear a semiconvex subregion R. Agent l must calculate if it actually satisfies the
criterion in Tab. 6.1, line 3 of PROCESS, namely p[l] /∈ int(R) and int(R)∩V(p[l]) 6= ∅.
This is accomplished by agent i sending along with its help request an oriented polyline
ψ (see Tab. 6.1, line 3 of SPEAK). By an oriented polyline we mean that ψ consists
of a set of points listed according to some orientation convention, e.g., so that if one
were to walk along the points in the order listed, then the interior of R would always
be to the right. The polyline encodes the portion of ∂R which is not part of ∂E and
the orientation encodes which side of ψ is the interior of R. Notice that for this to
work, all agents must have a common reference frame. Whenever the root broadcasts
a polyline, it is just a line segment, but as recursion becomes deeper, an agent needing
help may have to calculate a polyline consisting of a portion of its own beam and its
parent’s polyline. The polyline may even close on itself and create a convex polygon.
Examples of these scenarios are illustrated by in Fig 4.1. We conclude our description
of DOWSS with the following theorem.

Theorem 4.1 (Correctness of DOWSS). Given a simple polygonal environment
E and agent positions P = (p[0], . . . , p[N−1]), let the following conditions hold:

(i) the standing assumptions are satisfied;

∗ The root could be chosen by any leader election scheme, e.g., a predetermined or lowest UID.
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(ii) all agents i ∈ {0, . . . , N − 1} have a common reference frame;
(iii) p[0] ∈ ∂E;
(iv) the agents operate under DOWSS.

Then E is cleared in finite time.
Proof. As in Theorem 2 of [9], whenever an agent, say i, needs help clearing

a semiconvex subregion R, there is some available agent l satisfying p[l] /∈ int(R)
and int(R) ∩ V(p[l]) 6= ∅. This comes from the standing assumption that for every
connected component of Gvis, there is at least one agent on the environment boundary.
Now since visibility sets are closed, we may demand additionally that agent l sees a
portion of the oriented polyline ψ sent to it by i. This means that in an execution of
DOWSS, some l will always be able to recognize, using only knowledge of V(p[l]) and
ψ from local sensing and limited communication, that it is able to help. We conclude
DOWSS simulates OWSS.

(a)

s[4] s[3]

s[2]

s[0]

s[1]

s[5]

(b)

s[4] s[3]

s[2]

s[0]

s[1]

s[5]

(c)

s[4] s[3]

s[2]

s[0]

s[1]

s[5]

(d)

s[4] s[3]

s[2]

s[0]

s[1]

s[5]

Fig. 4.1. An example execution of DOWSS. The configuration in (a) results from s[0] clearing

the very top of the region with help of s[2], s[3], and s[4] followed by s[1] attempting to clear the
semiconvex subregion below where s[0] is aimed. When s[1] gets stuck, it requests help by broad-
casting the thick black polyline in (a), in this case just a line segment. s[2] then helps s[1] but gets

stuck right off, so it broadcasts the thick black polyline shown in (b). Next s[3] helps s[2] but gets

stuck and broadcast the polyline in (c). Similarly s[4] broadcasts the polyline in (d), in this case a

convex polygon, which only s[5] can clear. In general, information passed between agents during any
execution of DOWSS will be in the form of either an oriented line segment (a), a general oriented
polyline (b and c), or a convex polygon (d).

We now give an upper bound on the time it takes DOWSS to clear the environ-
ment assuming the searchlights slew at some constant angular velocity ω, and that
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communication and processing time are negligible.
Lemma 4.2 (DOWSS Time to Clear Environment). Let agents in a network

executing DOWSS slew their searchlights with angular speed ω. Then the time required

to clear an environment with r reflex vertices is no greater than 2π
ω

1−rN

1−r
.

Proof. There are only finitely many (r) reflex vertices of E , and finitely many
guards (N). Recall each visibility gap encountered during an execution of DOWSS
produces a semiconvex subregion whose reflex vertices necessarily are part of ∂E . This
means the number of visibility gaps encountered by any agent when sweeping from
φstart to φfinish (at any level of the recursion tree) can be no greater than r, i.e.,
refering to line 8 of PROCESS in Tab. 6.1, |G| = m ≤ r. Since the number of agents
available to sweep a semiconvex subregion decreases by one for each level of recursion,
the maximum depth of the recursion tree is upper bounded by N − 1. It is apparent

the number of nodes in the recursion tree cannot exceed 1+r+r2+· · ·+rN−1 = 1−rN

1−r
.

It is not known whether this bound is tight, but at least examples as in Fig. 4.2
can be constructed where DOWSS and OWSS run in O(r2) (⇒ O(n2)) time if guards
are chosen malevolently. A key point is that DOWSS and OWSS do not specify (i)
how to place guards given an environment, or (ii) how to optimally choose guards at
each step given a set of guards. These are interesting unsolved problems in their own
right which we do not explore in this paper.

s[0]
s[1]
s[2]

s[3]

Fig. 4.2. An example from a class of searchlight instances for which malevolent guard choice
in OWSS or DOWSS implies time to clear the environment is O(r2) (and therefore O(n2)). Here

r = 4 reflex vertices are oriented on the bottom so that s[r] = s[4] in the upper right corner sees
the entire environment. r − 1 = 3 guards are placed in the upper left and s[0] is chosen as the root.
s[0] clears up to the first reflex vertex (grey) where it stops and calls upon s[1] for help. s[1] then

calls upon s[2] which likewise calls upon s[3]. This happens every time s[0] stops (dashed lines) at
the other r − 1 reflex vertices. The recursion tree of such an execution has 1 + r(r − 1) nodes, thus
the environment is cleared in O(r2) time.

Another performance measure of a distributed algorithm is the size of the mes-
sages which must be communicated.

Lemma 4.3 (DOWSS Message Size). If the environment has n sides, r reflex
vertices, and N agents then the polyline (passed as a message between agents during
DOWSS) consists of a list of no more than min{r+1, N} points in R2. Furthermore,
since r ≤ n− 3, the list consists of no more than n− 2 points in R2.

Proof. For every segment (which is a segment of some searchlight’s beam) in
such a polyline, there corresponds a unique reflex vertex of the environment. The
correspondence comes from the fact that at a given time every searchlight supporting
a semiconvex subregion has its searchlight aimed at a reflex vertex where it’s visibility
is occluded. The uniqueness comes from the fact that if two searchlights support the
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Table 4.1
Asynchronous Schedule for Distributed One Way Sweep Strategy (cf Fig. 2.1, 3.1, 4.1, Tab. 6.1)

Name: DOWSS
Goal: Agents in the network coordinate their searchlight slewing

to clear an environment E .
Assumes: Agents are stationary and have a completely connected

communication topology with no packet loss. Sweeping is
initialized by a root.

For time t > 0, each agent executes the following actions between any two
wake up instants according to the schedule in Section 3:

SPEAK

Broadcast either
(i) a request for help,
(ii) a message to engage a child, or
(iii) a signal of task completion to a parent.

LISTEN

Listen for either
(i) a help request from a potential parent,
(ii) volunteers to help,
(iii) engagement by parent, or
(iv) current child reporting completion.

PROCESS

(i) Use oriented polyline from potential parent with information from sens-
ing to check if able to help, or

(ii) if engaged, compute wayangles, visibility gaps and oriented polylines.

SLEW

(i) Aim at start angle and switch searchlight on,
(ii) slew to next angle, or
(iii) slew to finish angle and switch searchlight off.

same semiconvex subregion, say R, and are aimed at the same reflex vertex, then
only one of the searchlights’ beams can actually constitute a portion of ∂R of positive
length. This shows the polyline can consist of no more than r segments and therefore
r+1 vertices. Also, in the worst case, the polyline grows by one edge for each level of
recursion. Such polylines start out as a line segment (defined by two points) and the
recursion depth cannot exceed N − 1. We conclude the maximum number of points
defining any polyline is min{r + 1, N}.

That DOWSS allows flexibility in guard positions (only standing assumptions
required) may be an advantage if agents are immobile. However, DOWSS only al-
lowing one searchlight slewn at a time is a clear disadvantage when time to clear the
environment is to be minimized. This lead us to design the algorithm in the next
section.

4.2. Positioning Guards for Parallel Sweeping. The DOWSS algorithm in
the previous section is a distributed message-passing and local sensing scheme to
perform searchlight scheduling given a priori the location of the searchlights. Given
an arbitrary positioning, time to completion of DOWSS can be large; see Lemma 4.2
and Figure 4.2.
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The algorithm we design in this section, called the Parallel Tree Sweep Strategy
(PTSS), provides a way of choosing searchlight locations and a corresponding sched-
ule to achieve faster clearing times. PTSS works roughly like this: According to some
technical criteria described below, the environment is partitioned into regions called
cells with one agent located in each cell. Additionally, the network possesses a dis-
tributed representation of a rooted tree. By distributed representation we mean that
every agent knows who its parent and children are. Using the tree, agents slew their
searchlights in a way that expands the clear region from the root out to the leaves,
thus clearing the entire environment. Since agents may operate in parallel, time to
clear the environment is linear in the height of the tree and thus O(n). Guaranteed
linear time to completion is a clear advantage over DOWSS which can be quadratic
or worse (see Lemma 4.2 and Fig. 4.2). Before describing PTSS more precisely, we
need a few definitions.

Definition 4.4.
(i) A set S ⊂ R2 is star-shaped if there exists a point p ∈ S with the property

that all points in S are visible from p. The set of all such points of a given
star-shaped set S is called the kernel of S and is denoted by ker(S).

(ii) Given a compact subset E of R2, a partition of E is is a collection of sets

{P [0], . . . ,P [N−1]} such that ∪N−1
i=0 P [i] = E where P [i]’s are compact, simply

connected subsets of E with disjoint interiors. {P [0], . . . ,P [N−1]} will be called
cells of the partition.

For our purposes a gap (which visibility gap is a special case of) will refer to any

segment [q, q′] with q, q′ ∈ ∂E and ]q, q′[ ∈ E̊ . The cells of the partitions we consider
will be separated by gaps.

Definition 4.5 (PTSS partition). Given a simple polygonal environment E, a
partition {P [0], . . . ,P [N−1]} is a PTSS partition if the following conditions are true:

(i) P [i] is a star-shaped cell for all i ∈ {0, . . . , N − 1};
(ii) the dual graph† of the partition is a tree;
(iii) a root, say P [0], of the dual graph may be chosen so that ker(P [0]) ∩ ∂E 6= ∅,

and for any node other than the root, say P [k] with parent P [j], we have that
(P [j] ∩ P [k]) ∩ ker(P [k]) ∩ ∂E 6= ∅.

Definition 4.6. Given a PTSS partition {P [0], . . . ,P [N−1]} of E and a root cell
P [0] of the partition’s dual graph satisfying the properties discussed in Definition 4.5,
the corresponding (rooted) PTSS tree is defined as follows:

(i) the node set (p[0], . . . , p[N−1]) is such that p[0] ∈ ker(P [0])∩ ∂E and for k > 1,
p[k] ∈ (P [j]∩P [k])∩ker(P [k])∩∂E, where P [j] is the parent of P [k] in the dual
graph of the partition;

(ii) there exists an edge (p[j], p[k]) if and only if there exists an edge (P [j],P [k])
in the dual graph.

We now describe two examples of PTSS partitions seen in Fig. 4.3. The left
configuration in Fig. 4.3 results from what we call a Reflex Vertex Straddling (RVS
hereinafter) deployment. RVS deployment begins with all agents located at the root
followed by one agent moving to the furthest end of each of the root’s visibility gaps,
thus becoming children of the root. Likewise, further agents are deployed from each
child to take positions on the furthest end of the children’s visibility gaps located
across the gaps dividing the parent from the children. In this way, the root’s cell in
the PTSS partition is just its visibility set, but the cells of all successive agents consist
of the portion of the agents’ visibility sets lying across the gaps dividing their cells
from their respective parents’ cells. It is easy to see that in final positions resulting
from an RVS deployment, agents see the entire environment.

†The dual graph of a partition is the graph with cells corresponding to nodes, and there is an
edge between nodes if the corresponding cells share a curve of nonzero length.
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Lemma 4.7. RVS deployment requires, in general, no more than r + 1 ≤ n − 2
agents to see the entire environment from their final positions. In an orthogonal
environment, no more than n

2 − 2 agents are required.
Proof. Follows from the fact that in addition to the root, no more than one agent

will be placed for each reflex vertex (only reflex vertices occlude visibility).
See Fig. 1.1 for simulation results of PTSS executed by agents in an RVS config-

uration. The right configuration in Fig. 4.3 results from the deployment described in
[3] in which an orthogonal environment is partitioned into convex quadrilaterals.

Lemma 4.8. The deployment described in [3] requires no more than n
2 − 2 agents

to see the entire (orthogonal) environment from their final positions.
Proof. See [3].
Both of the PTSS configurations in these examples may be generated via dis-

tributed deployment algorithms in which agents perform a depth-first, breadth-first,
or randomized search on the PTSS tree constructed on-line. Please refer to [2] and
[3] for a detailed description of these algorithms.

Fig. 4.3. Left are agent positions resulting from a Reflex Vertex Straddling (RVS) deployment.
Right are agent positions resulting from the deployment described in [3] in which an orthogonal
environment is partitioned into convex quadrilaterals. The PTSS partitions are shown by coloring
the cells alternating grey and white (caution: grey does not depict clarity here). Dotted lines show
edges of the PTSS tree where the circled agent is the root.

We now turn our attention to the pseudocode in Tab. 4.2 (A more detailed pseu-
docode, which we refer to in the proofs, can be found in the appendix, Tab. 6.2) and
describe PTSS more precisely. Suppose some agents are positioned in an environment
according to a PTSS partition and tree with agent 1 as the root. PTSS begins by
agent 1 pointing its searchlight along a wall in the direction φstart and then slewing
away from the wall toward φfinish, pausing whenever it encounters the first side of a
gap, say φj , where j is odd. Paused at φj , agent 1 sends a message to its child at
that gap, say agent 2, so that agent 2 knows it should aim its searchlight across the
gap. Once agent 2 has its searchlight safely aimed across the gap, it sends a message
to agent 1 so that agent 1 knows it may continue slewing over the whole gap. When
agent 1 has reached the other side of the gap at φj+1, agent 1 sends a message to
agent 2 and both agents continue clearing the rest of their cells concurrently, stopping
at gaps and coordinating with children as necessary. In this way, the clear region
expands from the root to the leaves at which time the entire environment has been
cleared. We arrive at the following lemmas and correctness result.

Lemma 4.9 (Expanding a Clear Region Across a Gap). Suppose an environment
is endowed with a PTSS partition and tree, and that agent i is a parent of agent j (see
Fig. 4.4). Then a clear region may always be expanded across the gap from P [i] to P [j]
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by s[j] first aiming across the gap and waiting for s[i] to slew over the gap. Both agents
may then continue clearing the remainder of their respective cells concurrently.

Proof. This obviously hold for the scenario in Fig. 4.4. Using the definition of
PTSS partition, it is clear any general PTSS parent-child relationship is reducible to
the case in Fig. 4.4.

s[i]

s[j]

v

v′

Fig. 4.4. Expanding a clear region (grey) across a gap (thick dashed segment [v, v’]) from cell

P [i] to cell P [j] may always be accomplished by the child (s[j]) aiming across the gap and waiting

for the parent (s[i]) to slew over the gap. Both agents may then continue clearing the remainder of
their respective cells.

Theorem 4.10 (Correctness of PTSS). Given a simple polygonal environment E
and agent positions P = (p[0], . . . , p[N−1]), let the following conditions hold:

(i) the standing assumptions are satisfied;
(ii) all agents i ∈ {0, . . . , N − 1} are positioned in a PTSS partition and rooted

tree with agent 1 as the root;
(iii) the agents operate under PTSS.

Then E is cleared in finite time.
Proof. Follows immediately from Lemma 4.9.
Since multiple branches of the PTSS tree may be cleared concurrently, and using

Lemmas 4.7 and 4.8, we have the next lemma (assuming processing and communica-
tion time are negligible, cf. Lemma 4.2).

Lemma 4.11 (PTSS Time to Clear Environment). Let the agents in a network
executing PTSS slew their searchlights with angular speed ω. Then time required to
clear an environment is

(i) linear in the height of the PTSS tree;
(ii) no greater than 2π

ω
(r+1) ≤ 2π

ω
(n−2) if agents are in final positions according

to an RVS deployment;
(iii) no greater than π

ω
(n − 2) if agents are in final positions in an orthogonal

polygon according to an RVS deployment or the deployment described in [3].
Proof. With communication time neglibile, each child will wait for it’s parent a

maximum time of 2π
ω

. It now suffices to observe that the maximum length of any
parent-child sequence is just the height of the PTSS tree.

Looking at the SPEAK section of Tab. 6.2, it is easy to see that message size is
constant (cf. Lemma 4.3).

Lemma 4.12 (PTSS Message Size). Messages passed between agents executing
PTSS have constant size.

Requiring guards to be situated in a PTSS tree may be more restrictive than the
mere standing assumptions required by DOWSS, but the time savings using PTSS
over DOWSS can be considerable. Though we have given two examples of how to
construct a PTSS tree, it is not clear how to construct one which clears an environment
in minimum time among all possible PTSS trees. It is also not clear how to optimally
choose the root of the tree (point of deployment). However, if information about an
environment layout is known a priori and one may choose the root location, then an
exhaustive strategy may be adopted whereby all possible root choices are compared.
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Table 4.2
Asynchronous Schedule for Parallel Tree Sweep Strategy (cf Fig. 3.1, 4.4, 4.3, Tab. 6.2)

Name: PTSS
Goal: Agents in the network coordinate their searchlight slewing

to clear an environment E .
Assumes: Agents are statically positioned as nodes in a PTSS par-

tition and tree, and each knows a priori the gaps of its
cell and UIDs of the corresponding children and parent.
Sweeping is initialized by the root.

For time t > 0, each agent executes the following actions between any two
wake up instants according to the schedule in Section 3:

SPEAK

Broadcast either
(i) a command for a child to aim across a gap,
(ii) a confirmation to a parent when aimed across gap, or
(iii) when finished slewing over a gap, a signal of completion to the child.

LISTEN

Listen for either
(i) instruction from a parent to aim across a gap,
(ii) confirmation from a child aimed across a gap, or
(iii) confirmation that parent has passed the gap.

PROCESS

When first engaged, compute wayangles where coordination with children will
be necessary.

SLEW

(i) Aim at start angle and switch searchlight on,
(ii) slew to next wayangle, or
(iii) slew to finish angle and switch searchlight off.

5. Conclusions. In this paper we have provided two solutions to the distributed
searchlight scheduling problem. DOWSS requires guards satisfying the standing as-
sumptions, has message size O(n), and sometimes takes time O(r2) to clear an envi-
ronment. PTSS requires agents are positioned according to a PTSS tree, has constant
message size, and takes time linear in the height of the PTSS tree to clear the environ-
ment. We have given two procedures for constructing PTSS trees, one requiring no
more than r ≤ n− 3 guards for a general polygonal environment, and two requiring
no more than n−2

2 guards for an orthogonal environment. Guards slew through a
total angle no greater than 2π, so the upper bounds on the time for PTSS to clear
an environment with these partitions are 2π

ω
r ≤ 2π

ω
(n− 3) and π

ω
(n− 2), respectively.

Because PTSS allows searchlights to slew concurrently, it generally clears an environ-
ment much faster than DOWSS. However, the comparison is not completely fair since
DOWSS does not specify how to choose guards but PTSS does.

To extend DOWSS and PTSS for environments with holes, one simple solution is
to add one guard per hole, where a simply connected environment is simulated by the
extra guards using their beams to connect the holes to the outer boundary. Another
straightforward extension for PTSS would be to combine it directly with a distributed
deployment algorithm such as those in [2] and [3], so that deployment and searchlight
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slewing happen concurrently. This suggests an interesting problem we hope to explore
in the future, namely minimizing the time to perform a coordinated search given a
limited number of mobile guards. Other considerations for the future include loosening
the requirements in the definition of the PTSS partition, and incorporating in our
model sensor constraints such as limited depth of field and beam incidence.
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6. Appendix: Extended versions of Tab. 4.1 and 4.2 referred to in
proofs.

16



Table 6.1
Asynchronous Schedule for Distributed One Way Sweep Strategy (cf Fig. 2.1, 3.1, 4.1, Tab. 4.1)

Name: DOWSS
Goal: Agents in the network coordinate their searchlight slewing to clear

an environment Q.
Assumes: Agents are stationary and have a completely connected communi-

cation topology with no packet loss. Sweeping is initialized by a
root who’s uid is 1.

The root initially has state = 4 and all other agents begin with state = 1, where
possible states are 1, 2, 3, . . . , 12. Aditionally, each agent i ∈ {0, . . . , N − 1},
possesses local variables parent, child, ψparent, ψtemp, j, G, Φ, φstart, φfinish, Ψ, and
u, all initially empty. As needed to clarify ownership, a superscript with square
brackets indicates the UID of the agent to whom a variable belongs.

For time t > 0, each agent i executes the following between any two wake
up instants according to the schedule in Section 3:

SPEAK

1: while state = 7 or state = 8 do

2: {request help}

3: BROADCAST(i, ψj(t), help)

4: state ← 8
5: while state = 2 do

6: {volunteer to help}

7: BROADCAST(i, parent(t), ψtemp(t), volunteer)

8: state ← 3
9: while state = 9 do

10: {engage a child}

11: BROADCAST(i, child(t), ψj(t), selected)

12: state ← 10
13: while state = 12 do

14: {report to parent when complete}

15: BROADCAST(i, parent, ψparent(t), complete)

16: state ← 1

LISTEN

1: while state = 1 or state = 3 do

2: {listen for help request}

3: if RECEIVE(i′, ψ
[i′]

j′
(t− τ), help), where 0 ≤ τ ≤

δ then

4: ψtemp ← ψ
[i′]

j′
(t − τ); state ← 3

5: while state = 8 do

6: {listen for volunteers}

7: if RECEIVE(i′, parent[i
′](t − τ), ψ

[i′]
temp(t −

τ), volunteer), where 0 ≤ τ ≤ δ, parent[i
′](t−τ) =

i, and ψ
[i′]
temp(t − τ) = ψj then

8: child← i′; state ← 9

9: while state = 3 do

10: {listen for engagement by parent}

11: if RECEIVE(i′, child[i′], ψ
[i′]

j′
(t − τ), selected),

where 0 ≤ τ ≤ δ, where childi
′

= i then

12: parent ← i′;ψparent ← ψ
[i′]

j′
(t−τ); state ← 4

13: else if RECEIVE(i′, child[i′], ψ
[i′]

j′
(t −

τ), selected), where 0 ≤ τ ≤ δ, where child[i′] 6= i
then

14: state ← 1
15: while state = 10 do

16: {listen for child to report completion}

17: if RECEIVE(i′, parent[i
′], ψ

[i′]
parent(t −

τ), complete), where 0 ≤ τ ≤ δ then

18: if j < m then

19: j ← j + 1; state ← 6

20: else if j = m then

21: state ← 11

PROCESS

1: while state = 3 do

2: {use ψtemp and V(p[i]) to check if able to help}

3: if able to see across oriented polyline ψtemp into

semiconvex subregion and not located in interior
of that subregion then

4: state ← 2
5: while state = 4 do

6: {when first engaged, perform geometric computa-
tions; note visibility gaps are listed ccw and radi-
ally outwards}

7: Compute φstart and φfinish {start and finish an-
gles}

8: Compute G← (g1, . . . , gm) {visibility gaps}

9: Compute Φ ← (φ1, . . . , φm) {resp. angles of vis-
ibility gaps}

10: Compute Ψ ← (ψ1, . . . , ψm) {polyline for each
visibility gap}

11: j ← 1 {initialize slewing counter}

12: state ← 5

SLEW

1: while state = 5 do

2: {aim at start angle and switch searchlight on}

3: θ[i] ← φstart
4: state ← 6
5: while state = 6 do

6: {slew to next angle}

7: while θ[i] < φj do

8: u←
min{smax,||φj−θ

[i]||}

||φj−θ
[i]||

(φj − θ
[i])

9: θ[i] ← θ[i] + u

10: state ← 7
11: while state = 11 do

12: {slew to finish angle and switch searchlight off}

13: while θ[i] < φfinish do

14: u ←
min{smax,||φfinish−θ

[i]||}

||φfinish−θ
[i]||

(φfinish −

θ[i])

15: θ[i] ← θ[i] + u

16: state ← 12
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Table 6.2
Asynchronous Schedule for Parallel Tree Sweep Strategy (cf Fig. 3.1, 4.4, 4.3, Tab. 4.2)

Name: PTSS
Goal: Agents in the network coordinate their searchlight slewing to clear

an environment Q.
Assumes: Agents are statically positioned as nodes in a PTSS partition and

tree, and each knows a priori the gaps of its cell and UIDs of the
corresponding children and parent. Sweeping is initialized by a root
who’s UID is 1. Agents need only communicate with their parents
and children.

The root initially has state = 2 and all other agents begin with state = 1, where
possible states are 1, 2, . . . , 10. Additionally each agent i ∈ {0, . . . , N −1}, possesses
local variables parent, Φ, φstart, φfinish, C, j, and u, all initially empty. As needed
to clarify ownership, a superscript with square brackets indicates the UID of the
agent to whom a variable belongs.

For time t > 0, each agent i executes the following between any two wake
up instants according to the schedule in Section 3:

SPEAK

1: while state = 7 do

2: {tell child to aim across gap}

3: BROADCAST(childj , aim across gap)

4: state ← 8
5: while state = 4 do

6: {tell parent when aimed across gap}

7: BROADCAST(i, aimed across gap)

8: state ← 5
9: while state = 9 do

10: {tell child when finished slewing over gap}

11: BROADCAST(childj , gap passed)

12: if j < m then

13: j ← j + 1; state ← 6

14: else if j = m then

15: state ← 10

LISTEN

1: while state = 1 do

2: {listen for instruction from parent to aim across
gap}

3: if RECEIVE(child[i′], aim across gap) and i =

child[i′]
then

4: state ← 2
5: while state = 8 do

6: {listen for confirmation from child aimed across
gap}

7: if RECEIVE(i′, aimed across gap) and i′ = childj
then

8: j ← j + 1; state ← 6

9: while state = 5 do

10: {listen for confirmation that parent has passed
the gap}

11: if RECEIVE(child[i′], gap passed) and

i = child[i′]
then

12: state ← 6

PROCESS

1: while state = 2 do

2: {when first engaged, perform geometric computa-
tions}

3: Compute φstart and φfinish {start and finish an-
gles}

4: Compute Φ ← (φ1, . . . , φm) {ordered gap end-
point angles}

5: Compute C ← (child1, . . . , childm) {resp. child
UIDs}

6: j ← 1; {initialize slewing counter}

7: state ← 3

SLEW

1: while state = 3 do

2: {aim at start angle and switch searchlight on}

3: θ[i] ← φstart
4: state ← 4
5: while state = 6 do

6: {slew to next angle}

7: while θ[i] < φj do

8: u←
min{smax,||φj−θ

[i]||}

||φj−θ
[i]||

(φj − θ
[i])

9: θ[i] ← θ[i] + u

10: if j is odd then

11: state ← 7
12: else if j is even then

13: state ← 9
14: while state = 10 do

15: {slew to finish angle and switch searchlight off}

16: while θ[i] < φfinish do

17: u ←
min{smax,||φfinish−θ

[i]||}

||φfinish−θ
[i]||

(φfinish −

θ[i])

18: θ[i] ← θ[i] + u

19: state ← 1
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